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Abstract.

~ _ The paper is the second in the series devoted to the study of construc-
tions of families of homogenizations. In the first paper [8] the properties
of the kernel &(+,h,t) were utilized. In this paper these properties are

established.

I 1"“ s




1. Introduction.

In [8] we developed an integral representation of the solution to a
differential equatignlthat models the equations that arise in the study of

periodic media (e.g., compbsite materials). The elliptic differential equa-

tion studied in [8] is o

n

a X, auh
- Z EE;( pq(h 3 q(x))+a. o's )u (x) = f(x)

p,q=1
on Rn, in which apq and ao are real-valued 2n-periodic functions and h
is a given positive number. An alternate proof of the classical homogeniza-

tion result (the limit of uh

as h—0) was given in [8], based on the
integral formula for uh that was developed there
The integral representation of uh depends on the 2n-periodic function

¢(-,h,t) that satisfies

_e7inty Z = (¢(y.h D!V 1 ()4ly.ht) =
p,q=1
on {y e R" - Iypl < w}, in which t € R". The main emphasis of [7] was
placed on the function uh; the properties of ¢ that were needed there were
stated without proof. This paper presents an analysis of ¢ 1in order to
prove these claims, namely, Lemmas 1 and 12 in [8]. Theorem 1 in this paper
is equivalent to Lemma 1 in [8], whereas the content of Lemma 12 and the dis-
cussion preceding it in (8] is contained in Theorems 16 and 18 here.
In section 2, the notation used here and the equation that ¢(+,h,t)
satisfies are given along with the statement of Theorem 1. The proof of
Theorem 1 is presented in section 3. The expansion of ¢(-,h,t) in powers of

h and properties of this expansion are developed in section 4. Section S is




devoted to developing several analyticity results associated with families of
sesquilinear forms. The results of section 5 are used extensively in section
3. Additional details and references can be found in [7].

A method for systematically developing classes of differential equations,
or even pseudodifferential operators, that describe the behavior of composite
materials with a periodic structure has been introduced in [3] and is based on

the results of [8] and this paper.

2. Notation and statement of the problem.

Llet S ={ys= (yl,...,yn) e R" . kal <mn for k=1,...,n}, and for

J=0,1, denote the standard Sobolev norm on S by "‘"j' In additien,

n

define |+, by |v.| = T 1Y (y)12ay|l2.
1 1 dy
S p=1 P

periodic functions for which S 1is the fundamental period, is denoted by

The Sobolev spaces of

ngP(S), and is defined to be the completion with respect to H-HJ, of th

complex-valued, c”-functions on R" that are 2n-periodic in each coordinate

variable.
Let apq, for p,g=1,...,n, and a, be real-valued, 2mn-periodic,
Lw-functions defined on Rn. Furthermore, assume an = apq and that there

exist positive constants 70 and 71 such that

ao(x) 27, and
(1) n - n 5
Y a (x)Ig& 27, T I1¢|™ forall & ecC,

p,g=1 AP 1 277 P

almost everywhere on R". For each h eC and t e Cn, define the sesqui-

1 1
linear form &(h,t) : Hper(S)prer(S)—ac by




(2) ®(h,t)¢,v] =I Z (¢(y) 1ht'y)i(me-iht'y)
Pq ayq
S

+h?a0(y)¢(y)v(y)}dy.

In section 3 we will prove

Theorem 1. There exists a neighborhood G of Rn+1 (contained in Cn+1),

such that a unique function ¢(+,h,t) € H;er(S) exists for each (h,t) € G

and satisfies

(3) ®(h,t){¢(+,h,t),v] = hZJ viy)dy for all v e H;eP(S).
S

Furthermore, the mapping

(4) (h,t)—¢(+,h,t) € H._ (S)

per
{s holomorphic on & (see Definition 19, section 5).
In the proof of Theorem 1, the following eigenvalue problem will be con-

sidered: seek A(h,t) €e € and a non-zero function y(+,h,t) € H;er(s) ‘such

that

1
per

(5) &(h,t){y(e,h,t),v]l = A(h,t)J Y(y,h,t)v(yldy for all v e€ H___(S).
S

Before proceeding to the proof of Theorem 1, we give two lemmas that we will

use repeatedly.

Lemma 2. A constant C0 exists such that

1 itey
cremEn vy S Ive Ty s GtV

for all v e HI(S), the standard Sobolev space, and for all t € Rn, where

3

e —————————————————————————————




eyl = tf+... +ti.

Proof. The proof of the right-hand inequality is straight-forward. The ine-

quality on the left is proved by applylng the right-hand inequality to the

function w = veit.y:

- etV
vl = lwe™ YIS coCaelt) vl - o

Lemma 3. Let H be a complex Hilbert space with norm "'"H and inner
product (-,-)H, and let ¢ : HxH—C be a sesquilinear form (i.e., &(¢,v]
is linear in ¢ and conjugate-linear in v). If there exist constants M

and 7 such that

1008, v1[ < MIgl v,

and
2
riviy < lelv,vl|
! »
for all ¢ and v in H, then for each f € H, the space of bounded
conjugate-linear functionals on H, there is a unique ¢ € H such that
®lo,v] = £(v) for all v € H.
Moreover, |¢l, < l!lfll
) H - 7 H*.

Lemma 3 is known as the Lax-Milgram theorem (see [2]). The essense of
the proof of Lemma 3 is the existence of a bounded operator A that maps H

isomorphically onto H such that ®&{¢,v] = (A¢,v)H for all ¢ and v 1in

H. This fact will be used in the proof of Theorem 22, in section 5.




3. Proof of Theorem 1.

The ideas and results of section 5 will be used extensively in this

section. Note that ngr(S) and H;er(s) satisfy the conditions imposed on

H and V, respectively, 1in section 5, 1i.e., H1 (S) 1is a continuously,

per
densely, and compactly embedded subspace of ngr(S)' (A discussion of spaces

of periodic functions is contained in [1].) Clearly, (h,t) € Cn*lh—é

®(h,t)[¢,v] € C is an analytic function for each ¢ and v in Hl (s).

per

We start here by determining an open set G ¢ Cn+1 such that Rn+1 <G

and such that &(h,t) satisfies inequalities similar to (34) and (35) for

each (h,t) € G. Then we will show that, in the sense of (5), O 1is not an

eigenvlaue of ¢(h,t) when h =0 and (h,t) € Rn+1, but that 0 is a

simple eigenvalue of &(0,t). The conclusions of Theorems 26 and 27 in
section 5 get us part of the way through the proof of theorem 1; we must
investigate further the eigenvalue problem associated to &(0,t).

Lemma 4. There exists an open set G ¢ Cn+1 and real-valued functions M,7,

and p such that u is continuous on G and for each (h,t) € G, -M(h,t) >

0, 7(h,t) >0,

1

1) 19(h,t)(¢, vl SM(h,t)II¢||1|Iv||1 for all ¢ and v in Hper

(s),

and

1

11) 7(h, )IVIZ < Re(@(h,t)lv,v]) +u(h,)IvIZ for all v e i

(s).

Moreover, G can be chosen so that K™} ¢ G and so that (h,t) € G when-

ever (h,t) € G.

Proof. For each z € € and ¢ and v in H1 (S), define the sesqui-

per
linear form
n
_ a iz.y, 8 “izey, .
B(z)[¢,v] = J :E: apq(y)gy—(¢(y)e )5§"(V yle )dy;
S p,g=1 q q




thus, &¢(h,t)le,v] = B(ht)[¢.v]4-h2I ao(y)¢(y)v2y§dy. Whenever it is conven-
S

ient in this proof, we will use ht = p+i0c where p and o are real

n-vectors. Defining
F(p,a)(¢,v] = B(p+ic)(¢.v] - B(p)(¢, V]
n
- 8 1oy 3mye"1PY
J Z apq(y){crp a—yq—(¢(y)e v(yle
S p,gq=1

- ¢q¢(y)eip'y%(vly5e-1p°y) - 0 o $(VIVIyTHdy
q

it follows, since each a.pq is an L°~function, that there exists a constant

K such that

(8) IF(p,0) 18,11 5 Klol (1+1ol)lige’® ¥y IveP*Y) .
In addition, there is a constant K’ such that
IB(p) (@, vl S x'lm‘”'ylluveip‘ytl.

Using Lemma 2 and the fact that a. 1is bounded, it follows that there exists

0
a positive number M(h,t) for each (h,t) c"*l such that (i) is true.
Next a consequence of (1) is that
B(p)(v,v] 2 71|veip.y|§

and therefore
(7) Re(B(p+ic)(v,v]) +11|IVIIc2) = B(p)(v,v] +Re(F(p,o)[v,v]) + 711IVII§

ip+y,2
2 (7, - Kol (1+lal)) ive Yy

We now define G by

7

L KIImCht)f (1+)Im(ht) ) < 5}

G = {(ht) e c™




and set

¥
7(h,t) = 1

zc§(1+une(ht)u)2

in which CO is defined in Lemma 2. Finally, setting K” = |Ia0||L (s) and
-]
using (7) and Lemma 2, we conclude that
2
Re(®(h,t)[v,v]) + 7qlvilg
2 2 2
= Re(B(ht)[v,v]) +Re(h ao(y)lv(y)l dy) +7,lvlg
S
< 70, OIvIZ -k %l
for (h,t) € G, which ylelds (ii) with wu(h,t) = K”Ihlz-*v a

1
For each (h,t) € G, we can associate to ¢(h,t) a closed operator

T(h,t) as in Theorem 22:

o(h,t)[g,v] = (T(h,t)d,v) 0 for all v € H;e (S)

r
Hper(S)

and for all ¢ in the domain of T(h,t), which is a dense subspace of

Hl (S). Reference is made to T(h,t) 1in the next few paragraphs in order to

per
draw upon the results of section 5.

For each (h,t) € Rn+1. a direct consequence of (1) and lemma 2 is
ihtey,2 2, .2 ml""oh2'71) 2
1]

2C0(1+"(htﬂ)

for all v e H;er(S). If (h,t) e Rn+1 and h # 0, then the hypotheses of

Lemma 3 are satisfies; hence &(h,t)[¢,v] = I wiy)v(yldy for all v e
S

1 o
Hper(S)' is uniquely solvable for each w € Hper(s)‘ Consequently, O 1is in
the resolvent set of T(h,t), and by Theorem 26, ({(h,t) € Rn+1 : h =0} |is




contained in an open set in Cn+1

on which (4) is holomorphic.
Now let h=0. For any T € R"™ (or €"), we have from the first

inequality in (8) that

®(0,t)lv,v] 2 7llVIf.

If 0 1is an eigenvalue of &(0,T) with wo € H;er(s) being an associated
eigenfunction, then
0= @(O,t)[wo.wol 2 7, l¥5ly,

and consequently, wo is a constant function, which depends on <. There-
fore, 0 is an eigenvalue of (the associated closed operator) T(O,t), and
wo is the only eigenfunction associated to 0. There are no generalized
eigenfunctions when t € R® because the identity &(0,t)(v,¢] = &(0,7T)(p,v]
implies, by Corollary 25, that T(0,t) 1is selfadjoint.

The following conclusions can now be drawn from Theorem 27. For each
T € Rn, there exists a neighborhood Gt c G of (0,7), and there exists a
complex valued function A, aralytic on Gr’ sucht hat A(0,t) = 0 for
(0,t) € GA and such that A(h,t) 1is a simple eigenvalue of &(h,t) when
(h,t) € G. Furthermore, there exist two holomorphic functions (h,t) € GTF—9
P(h,t) and (h,t) € Gtk—aRz(O,h.t), with values in the space of bounded
linear operators that map ngr(S) into H;er(S)’ such that P(h,t)
projects ngr(S) onto the 1-dimensional eigenspace spanned by the eigen-

vector assoclated to A(h,t), and such that

2
(9) #(+,h,t) = s sP(h,t)1+h°R,(0,h, )1

for each (h,t) e G, for which Aa(h,t) # 0. Here 1 1is the constant func-
tion that takes on the value 1 on S. Note that A(h,t) 1is not identically

0 on Gr since 0 1is not an eigenvalue of &(h,T}) when h 1is a non-zero




_*

real number; therefore, this representation of ¢(+,h,t) is meaningful.

Clearly, the holomorphy of (h,t)+—¢(+,h,t) on Gr is completely
2 2
h h
determined by that of Xt We will show that Xh ) has an analytic

continuation to h =0, and that there is a suitable restriction G; of GT,
on which A(h,t) = 0 if and only if h = 0. This will be done by determining
part of the Taylor expansion of A(h,t) 1in powers of h about h = 0, where
it will be seen that the coefficient of hk is 0 for k =0,1.

For the moment, we assume the existence of a function w, analytic on

Gr’ such that

(10) A(h,t) = h%(h,t) for (h,t) € G,.

Letting y(+,h,t) € H;er(S) be the eigenfunction associated to A(h,t) as in

(5), the first inequality in (8) yields
2 2 2
Voh R(',h,t)ﬂo < &(h,t)[y(,h,t),¥(+,ht)] = X(h.t)"w('.h,t)no

for (h,t) € GT n Rn+1. Consequently, w(h,t) 2 7, for (h,t) e Gt n Rn+1.

and by continuity, there is an open set G; < Gt such that (Gt AR ¢ G;

he 1

AR D - elh Ty IS

analytic on G;, from which it follows that (9) is holomorphic on G; as

and Re(w(h,t)) > 0 for (h,t) € G;. Thus (h,t)+—

well. Assuming that (10) is valid, Theorem 1 is proven.

In the process of determining the Taylor expansion of A(h,t) in powers
of h about h = 0, we develop a similar expansion of the eigenfunction
y(.,h,t). In section 5 (see (45)), we show that y(-,h,t) can be chosen so
that it depends holomorphically on (h,t) € Gr' The Taylor expansion of
A(h,t) and ¥(-,h,t) in powers of h will be obtained next, by expanding
the eigenvalue equation (S) in powers of h and equating the coefficients of

like powers.




Upon setting

¢ ¢
¢ [¢,v] = 2 a (y) (y) (y)dy
0 I; p.q=1 P4 Yq p
n 3¢
(11) <¢1(t)[¢.v] = | ¥ a (y)(¢(y) (y)t - 5—-(y)v(y)t )dy
S p,g=1 P4 p Yq P
® (t)[¢,vl = I [p (y)t tp + ao(y)]¢(y)v(y5dy

for all ¢ and v in H;er(S) and for all t e C", it follows from the

definition of &(h,t) that

2
(12) ®(h,t) = ¢0+@1[t)h+@2(t)h .
n n K
Substituting the expansions A(h,t) = LA, (t)h y(e,h,t) = Y y(s,t)h", and
k‘O k=0

(12) into equation (5), equating like powers of h, and noting that Ao(t) =

A(0,t) = 0, the following system of equations is derived:

]
(@]

(13) 0,
Al(t)J‘ Uy (v, OTTFIay - & (£) [y (=, 1), v), k

eale (o, t),v] =

v
»

);A(t)f _ (v, )9y Tdy - z«»(t)[w“ vl K

for all v e H;er(s). Successively solving the equations in (13) will yield
formulas for the Ak(t) and wk(o,t).
The method of solving (13) will be based on Lemma 6, below. First note

that

(14) ¢0[¢.1] = Q0[1,¢] = Ql(t)[l,ll =

1 n
for all ¢ € Hper(S) and for each t e C .

Definition 5. W= {v e H' (S) : I v(y)dy = 0}.
Selinltion o per s

10




Each function in H;er(s) can be represented uniquely as the sum of a

constant function and a function in W.

Lemma 6. |-| is a norm on W, and there exists a constant K such that

1

l¢0[¢.v}| s l(l«#lllw1

2
<b0[v,v] 2 erIVI1

for all ¢ and v in W.

Each equation in (13) is of the form

1

¢0[wk,v] = Fk(v) for all v e Hper(S)'

in which Fk is a conjugate-linear form on H;er(S) which depends on t;

Al(t),...,hk(t); and w0(°,t)....,wk_1('.t). Furthermore, F, is bounded on
H;er(S)‘ It is also bounded on W, as a result of the closed graph theorem
(see (31)). A consequence of (14) is that we must ensure that Fk(l) = 0,
which will determine Ak(t) uniquely. Then Lemmas 3 and 6 imply that

wk(-,t) is determined uniquely as an element in W, that is, up to an addi-
tive constant. However, the arbitrary constants in wk(-,t) will remain

essentially arbitrary because, being an eigenfunction, ¢(¢,h,t} 1is uniquely

determined up to a multiplicative constant only.
Theorem 7. For k 2 1, define functions ik(°,t) € W according to
(15) =¢1(t)[1,v1, k=1

. -0, (£){x, (+,£),v] - &, (t)[1,v], k=2
¢0[xk(~,t),VI = 4
k-1

LA )] % (y,t)v(y)dy -
| J=2 J Is k-J

L%
w

2
ngoJ(t)[xk_J(-.t).v], K

for all v € W, where

11




(0, L=1
1
(16) At(t) = {(2n)

(0, (1), (-, t),1] + &, (2)[1,1]), t=2

1 — > ~
i (g (o 80,11+ 85 (0 ey o0 0,110, 22 3.

Next, define y,(+,t) e H;er(S) for £20 by

£o(t), t=0
(17) w,(+,t) = {e-1
¢ .
JEOfJ(t)xc_J( ) HE, (L), L2,

in which each fl is a holomorphic function (in a neighborhood of t = T)

and fo(t) # 0 for all t. Then (16) and (17) solve (13).

Proof. Upon solving (13) with k = 0, we have that wo(',t) must be a
constant function, which we denote by fo(t) and which we assume is non-zero
for each t because fo(t)-wo(-,t) = y(+,0,t) is an eigenfunction.

In order to simplify notation, we will drop the dependence on t 1in the
remainder of the proof.

For k =1, (13) becomes

_ _ 1
¢0[w1,v] = AlfoJ v(y)dy f0¢1[1,v] for all v e Hper(S)’
]

Setting v =1 and using (14) yields 0 = Alfo(ZH)n, vwhich implies Al =0

because fo # 0. Now (13) with k = 1 can be reduced to

Oolwl,v] = -f0¢1[1,v] for all v e W,

the solution of which is given by (17) with ¢ = 1.

Substituting (16) and (17) into (13) with k = 2, yields

12




S

for all v e H;er(S)' Again, set v =1 and use (14) to obtain O =
n ~
Azfo(ZN) -fo(Q1[11,1]-+Q1[1.1]). Since fo # 0, the solution to this

equation is given by (16). Now (13) with k =2 can be reduced to

Qo[wz,v] = -fo(Qllxl,v]-+01[1,v])-f101[1.v] for all v e W,

and the solution to this equation is given in (17).
An induction argument, similar to the one we will use in the proof of

Theorem 15 establishes the remaining formulas in (16) and (17). a)

As we noted earlier, the arbitrary nature of the constants ft(t) can be
traced to the fact that the eigenfunction ¢(-,h,t) 1is determined uniquely,

[
up to a multiplicative constant, only. To see this, let c(h,t) = r ck(t)hk
k=0

be analytic in h and t, with co(t) # 0, and define

k
» _t S
FR(8) = ) B (e (8), k20
£=0
and
-
fo(t). k=20
vo(e,t) = Jk-1
L ’ 21

- »
JEOfJ(t)xk_J(~,t)+fk(t), K

Sl
Then ¥ wk(~,t)hk is the power series expansion of c(h,t)y¥(+,h,t); clearly
k=0

»
the form of wk is the same as that of wk'
We have shown that (10) is correct, and consequently, the proof of

Theorem 1 is complete.

13

N —




4. ion in wers of h.

The expansion of ¢(-,h,t) in powers of h can be determined formally

by expanding (3) in powers of h and equating like powers. This formal pro-

cess is valid because hir—¢(-,h,t) € H;er(S) is holomorphic at h =0 for

each t € € such that (0,t) e G (see Theorem 1), and because &(h,t)[¢,v]

is a polynomial in h and t for fixed ¢ and v in H1 (S}). By

per
substituting

o
(18) #(+,h,t) = Z¢k(-,t)h“
k=0
and (12) into equation (3), the following system of equations for the coeffi-

cients ¢k('.t) is obtained.

~

(19) 0, kK = 0

01(t)[¢0(°,t),v]. k =1
¢0[¢k(',t),vl = 4

"
[A¥]

[ vinrdy - o ()19, (. £),v] - 8, ()18, 5+ 8D, V], K
S

(-2, (0D _, (-0 t),v] = &, ()9 (-, t),v], k

[\%
w

for all v e H;er(S)‘ The radius of convergence of (18) depends on t, and

each coefficient ¢k(°,t) is in H;er(S) and depends holomorphically on t.
The method of determining each ¢k‘ is similar to that used in the proof
of Theorem 7 to determine the Taylor expansions of hr—A(h,t) and
h—y(+,h,t). Recall that W 1is the subspace of H;er(S) of functions that
have an average value of 0. A consequence of (14) is that the right-hand
side of (19) must be equal to 0O when v = 1. On the other hand, restricting
v to be in W, Lemmas 3 and 6, applied to (18), uniquely determine ¢k('.t)

as an element in W (i.e., up to an additive constant), in terms of

14




¢k_1(-,t) and ¢k_2(-,t). Then ¢k(-.t) becomes uniquely defined as an

element in H;er(S) by requiring the right-hand side of the equation for

¢k+2(~.t) in (18) to be 0 when v = 1.

Theorem 15. For each k 2 1 define xk(~,t) € W to be the solution of

(20) &yl (+,t),v] = {-0, (t)[x, (+,t),v] - @, (t)[1,v], k =2
-8, (W) (s t),vI- o (t) [ ,(+,t),v], k23
for all v e W, and for each k 2 0 define gk(t) € C by
(21) (2m)™ ‘oo
Ol(t)[x1(°,t).1]+02(t)[1.1]
g (t) = gy(t) k-1
- . . >
P JE:Ogj(t)wl(t)[xkﬂ_‘j( .t).l]-+¢2(t)[zk_J( ,£),1]1), k21
Then the coefficient of hk in (18) is given by
go(t), k=20
(22) ¢k('.t) = {k-1
JE:Ogd(t)xk_d(-,t)-bgk(t), k 2 1.

Proof. Throughout this proof we will suppress all dependence upon t. First,
each Xy is well defined in W by (20) because of Lemmas 3 and 6 and because
each right-hand side in (20) is a bounded conjugate-linear form on W (see
(30) and (31)).

It follows immediately from (18) with k = 0, that ¢0 is a constant

function, which we denote by 8y For k=1 1in (19), we now have

¢0[¢1.v] = -go¢1[1,v] for all v e H;er(S)'
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Since 01[1,1] =0 (see (14)), the solution ¢1 has the form of (22); Xy
is defined by (20), but 8 and g, are arbitrary constants.

We next consider k =2 1in (19), and substituting (22), we obtain

(23) 00[¢2.v] = J vlyidy-(go¢1[xl,v]-*gl¢1[1.V])-go¢2[1.V]
S

for all v € H1

per(S)'

Setting v =1 and using (14) yields

—-— - n-
0= QO[QZ.II = (2n) go(¢1[xl.1]-+¢2[1,1]).

Solving for g, yields (21) with k = 0. On the other hand, requiring v to

be in W, and using (20), gives
¢0[¢2,v] = —go(Qllxl,v]-*Qzll,v])-glélll,v]
= go¥plx,. VI + 8y 85lxy. v,

which can be solved easily for ¢2 as a function in W. Thus, ¢0 is com-
pletely determined as in (22), whereas ¢1 and ¢2 have the form of (22); we
have yet to show that g8, and 8 have been correctly defined.

Now let k 2 3, and assume that ¢0,.. are given by (22), and

"¢k—3
that P2 and $y-q bhave the form of (22). That is, we are certain that

go,...,gk_3 are correctly defined in (21), but are not sure about gk_z and
81 We with to show that 82 is correctly defined in (21) and that ¢k

has the form of (22). Making use of our assumptions, (19) becomes

k-3
Pl v] = -ZgJ(ﬁllxk_l_J.v} +<b2[xk_2_J.v])
J=0
-gk_z(Qllxl,v]-f@zll,v])-gk_lélll.v].
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Setting v =1 yields

k-3
= = - _(21:)n
0 = 0,l¢,.1] = ZSJ(¢1[x(k_2)+1_J,VI+<b2[x(k_2)_J.1]) gy
3=0

which can be solved for P and thus obtaining (21). Finally, upon
requiring v to be in W, it follows from (20) that ¢k has the form given

in (22). a

Next, we sufficiently investigate the properties of the expansion of
¢(+,h,t) 1in powers of h, to be able to prove Lemma 12 in [8]. The results
are stated here in Theorems 16 and 18.

We begin by determining the dependence on t of xl(',t). Expanding the

right-hand side of (20) with k = 1, accorrding to (11) yields

n n
= - av
8oLz, (-, t),v) = 12” Zapq(y)gy—(y)dy]tq
q=1

S p=1 a

for all v € W. Now define xl-q € W, foreach g=1,...,n, to be the
unique solution (cf. Lemmas 3 and 6) of

n

_ av
(24) Qo[xl;q,v] = J Zapq(y)éy—(y)dy for all v e W.
S p=1 !
Consequently,
n
(25) [t) = 1zx1;qtq‘
q=1

Note that xl-q is a real-valued function because the same is true for each

apq' Furthermore, it follows from (24) and the definition of QO that

(26) Qo[xl;q-*yq.v] =0 for all v e W.
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The following formula for go(t) can be easily obtained by substituting
(11) and (25) into (21):

(27) g(t) = ——1 .
p’§=1qutqtp+A0

where

A = 1 I a. (y)dy
0 S 0

(2m)"
28
- L (e )+ 3 T1iqy,
A = I a_ (y)+ a_ (y) —(y) )dy.
PA (amPds PAT pmy PP OV
= 1

Theorem 186. AO € R, qu € R, qu = qu. and O < go(t) £ ———— for

7 At +y

1 0

t e Rn.
Proof. AO and {qu : p,bg=1,...,n} are real numbers because each inte-

grand in (28) is a real-valued function. It follows from the definition of

] and from the formula for A that
0 pq

1
A= —=[x, _+y.y 1
P4 (" 0 “Lia Yq’7p

and upon using (26) with v = xl-p we obtain

1
29) A = —09 +y , + for all ,q=1,...,n.
( pq [xl;q y xl;p yp] o P.q

(2m)™ 0 a

The symmetry of qu follows from (29) (and (11)), since symmetry condi-
tions are imposed on the coefficients apq’ and since each function involved
in (29) is real-valued.
An immediate consequence of (1) and (28) is AO 2 7y Next, define
n
E(y,t) = Y t y . Then (25), (26), Lemma 6, and the fact that x.(-,t) is a
94 1

q=

periocdic function imply
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Amfa$ E;?ﬁol1m}nt)+§b,w.4x“-¢)+€b,nl

p.q=1
7 2
2 nl-ixl .t)+€(°.t)|1
(2n)
azl
- :E:|-i—-(y.t)-+t 12ay
(2m)™ S p=1
7
= {le , +ZZ (y,t)]dy+(2n) It )
(2m)™
2
2 71Htﬂ
Then, ES%ET 2 71"tﬂz-*10 follows from (27). a

Next we prove

Lemma 17. There are positive constants 7 and 6 which are independent of

t € R® such that

TSR ngo(t)ek(1+||tll)k for each k 2

Proof. After stating a few preliminary results, the proof is presented in

three steps. First, an upper bound for lxk(-.t)l is derived from (20).

1
This result is then used with (21) in order to obtaln an upper bound on

ng(t)l. Finally these two bounds and (22) will give an upper bound on
“¢k(',t)ﬂl-

It follows from (11) that there is a constant c1 such that

(30) o, (t)[$,v]] < c1(1+||tu)k||¢||1uv||1 for k = 1,2,

because the coefficients a, and apq are Lm—functions. The closed graph

theorem implies that there is a constant c¢ which we take to be larger than

2.
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(2n)n/2, such that
(31) Hv"1 < czlvl1 for all v e W.
We now have from (20) that

[ 2
c102(1+||t||)|vl1 k=1

18401, (+,£),v11 S e, cot(1+Ith) Iz, (. )1, + (eltDBHiviy, Kk =2

2 2 J
°1% ngm"t“) 1€ yCatd g Iviy, k 2 3.
Lemmas 3 and 6 imply
co (1+ith), k=1
I (oo t) 1y < qeaClx, (o t) 1) + (1+tI) (1+)1t)), k=2

c3(lxk_1(',t)ll+ A+t iz, (-, )1 )+, k 23,

;2 |
in which c3 = > An induction argument proves
1
k k
(32) Izk(-,t)l1 < (c3+1) (1+)t))™ for k = 1,2,.

Next, using (30), (31), and (32) in (21) yields

go(t) ko1 2
|8k(t)l < = )n Zng(t)lclcz(“."t").(|xk+1_J(o,t)|1+(1+||t||)|xk_J(-_t)|1)
n 3=0
2 k-1
c.c.(c,+2)
s TE gy (I (t? ) 1 () 1 tegen) e

for k 2 1. A consequence of Theorem 16 is that this last inequalily can be

rewritten as
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k-1
g ()] S c, Zng(t)|(c3+1)"'~’(1+utu)“'J for k 2 1,
J=0
where
2¢ cz(c +2)
17273
C4= n .
(2n) min{wo,zl}

Another induction argument then proves
(33) lg ()] < g (t)(c+1)¥(c +D)¥(1+4tN® for k 2 0.
K & 3 4

Finally, substitute (32) and (33) into (22) to obtain

k-1
lo (-, t). S Z (t)e (c+1) (e +1)d (141t DK
k't &p't’Ct%; 4
J=0

k J k
+ggltic,(cqyv1) (e + 1) (1+1L])
k k k
< czgo(t)(c3+1) (c4+2) (1+1tn) 7,
which finishes the proof. a

By computing a majorizaing series for (18), the next theorem is a conse-

quence of Lemma 17.

Theorem 18. lLet m and © be given as in Lemma 17, and suppose h > 0 and

t € R® satisfy 6(1+|t|)h < 1. Then

ngo(t)

and

k k+1

16+, h t)-Z¢ (-.t)nd), s ™ &) (1+ge) Kt ipkt!
P 3 1 * Te(1+th

J=0

for k 2 0.
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S. Appendix.

In this section we develop some of the theory that was used in section 3,
when making some of our analyticity claims. The main goals here are Theorems
18 and 238. Throughout this section, we make the following assumptions. Let
V and H be separable, complex Hilbert spaces in which V 1is a compactly
and continuously embedded dense subspace of H. We denote the associated

inner products by (+,¢),, and (-,)

v and the associated norms by H°HV

HD
and H-HH. Let G be an open set in Cn. and consider a family of sesqui-
linear forms ®&(z) : VxV—, defined for each z € G. Suppose that there

are real-valued functions M,7, and pu defined on G such that M(z) > 0

and 7(2) >0 for z €G, pn 1is continuous on G, and for each z € G

(34) 1®(z)(¢,v]l < M(z)"¢ﬂvﬂvﬂv for all ¢ and v in V
and
(35) 7(z)||v||§ < Re(#(z)[v,v]) w(z)uvufI for all v e V.

Furthermore, suppose that z+—®(z)}[¢,v] 1is analytic on G, for each ¢

and v in V.

For a given w e H, we want to determine the dependence on 2z, in par-

ticular situations, of ¢(z) € V, which satisfies

o(z)[¢(2),v] = (w,v)H for all v e V.

In so doing, we will consider the eigenvalue problem: seek A(z) € € and

¢(z) € V such that

(2} (w(z),v] = A(z)(w(z).v)H for all v e V.

Let ae€G If O 1is not an eigenvalue of &(a), then we will show that

®(z) exists for, and depends analytically on, z in a neighborhod of a. If

22




0 1is a "simple" eigenvalue of ®&(a), then we will show that A, with A(a)
= 0, 1is analytic in a neighborhood of a, and we will derive an expression
for ¢(z), exhibiting its dependence on A(z).

When z is one complex variable, many of the results of this section can
be found in [5]. An important difference is that we have imposed alternate
conditions ((34) and (35)) on &(z). This allows us to conclude that ¢ is
analytic with values in V, rather than in H, which is the conclusoin in
(s].

At this point we want to give a definition of analyticity, or holomorphy,
for Banach space valued functions of several complex variables. Several defi-
nitions are possible. In a setting more general than Banach spaces, three
definitions are stated and proven to be equivalent, in chapter III of [4].

n

First an open polydisc A(a,p) in € with center a and multiradius p =

(pl....,p ), where O < Py < ®w, 1is defined by

n

Ala,p) & {z € c” . lz,-a,l < pJ for j=1,...,n}.

J J

Definition 19. Let W be a Banach space, and recall that G 1is an open set

in c". A function w: G—W 1is analytic, or holomorphic, if for each a €
G there is a polydisc A(a,p) ¢ G and a set of coefficients {wa(a) : a is

a multi-index} ¢ W such that ¥ w (a)(z-a)® converges in W to w(z)
Oslal

for each z € A(a,p).

We will have several occasions in which the next two lemmas will be used.
When n =1, proofs can be found in [5], and for the general case they are
prove in (7]. Let H1 and H2 be two separable, complex Hilbert spaces and

denote the inner product on Hz by (e,*) Denote the space of bounded

2

linear operators mapping H1 into H2 by B(Hl'HZ)'
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Lemma 20. Let T(z) € B(H1'H2) for each z € G. The following statements
are equivalent:
i) T G—»B(Hl,Hz) is holomorphic;

11) T(-)¢ : G—9H2 is holomorphic for each ¢ € Hl;

ii1) (T(°)¢.v)2 : G—C 1is holomorphic for each ¢ € Hl and Vv € HZ'

Lemma 21. Suppose T :G—eB(Hl.HZ) is holomorphic, and let a e G. If

1

T(a) " e B(Hz.Hl), then there exists a neighborhood Ga € G of a such that

'1‘(2)-1 exists for z e G1 and 'l'(')—1

We are now ready to state and prove the results on which the main

: Gl—aB(Hz,Hl) is holomorphic.

theorems of this section are based. We begin by showing that there exists a
closed operator T(z) : D(T(z)) ¢ V—=H such that &(z)[¢,v] = (T(z)¢,V)H

for all ¢ € D(T(z)) and v € V. The next theorem gives one way of con-
structing such an operator, which will be convenient for us in what follows.

" Other forms of this representation theorem can be found in [S5] and [6]. See
also [2] and [9].

Throughout this section, we will denote the domain and range of an opera-

tor T by D(T) and R(T). Also, in the next theorem only, the dependence

on 2z as we have stated so far, is inconsequential, and so we drop it.

Theorem 22. Let ¢ : VxV—C be a sesquilinear form for which there exist

real constants M > 0, y >0 and u such that

(34') |®lo,v]| < Mﬂ¢uvﬂvuv for all ¢ and v in V
and

' 2 2
(357) ¢va < R(¢IV,V1)-*quHH for all v e V.

Then there is a unique closed operator T : V—H such that

i) D(T) 1is dense in V;
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i1) ole,v] = (T¢,v)H for all ¢ € D(T) and v € V; and
iii) given ¢ € V and we H, 1Iif &[¢,v] = (w,v)H for all v 1in a

dense subspace of V, then ¢ € D(T) and T¢ = w.

Proof. Uniqueness follows from (iii); let there be another closed operator S
such that &[¢,v] = (S¢,v)H for all ¢ € D(S) and v e V. Then ¢ € D(T)
and T¢ = S¢.

Since the embedding of V in H 1is continuous, it follows from the
Riesz representation theorem that there is a linear operator F € B(H,V}) such

that

(w,v)H = (Fw,v)v for all weH and v € V.

Furthermore, F is a 1-1 map, and R(F) 1is dense in V.

Next, it follows from (34‘) and (35‘) that &[«,+] +pu(-,*) as a ses-

H’
quilinear form on VxV, satisfies the hypotheses of Lemma 3. From the dis-
cussion that follows Lemma 3, it follows that there exists an operator A“ €

1

B(V,V) such that A; € B(V,V) adn &[¢,v]+p(e,v), = (Au¢,v)v for all ¢

and v in V. Now define
D(T) = {¢p € V : A“¢ € R(F)}

and set

= (F1a -

in which I 1is the identity operator on H.

Clearly the choice of u 1in (35’) is not unique. That the definitions
of D(T) and T are independent of u can be seen, as follows. Let u' # pu
be a real number for which (35’) remains valid when pu 1is replaced by pu’.

(The value of 7y > 0 makes no difference.) The definitions of A“ and A

imply
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(A}l'¢’V)V -u (Fo,v), = (A“¢. v)y - k(Fg,v)y

for all ¢ and v in V. Thus

(A“,—M'F)¢ = (A“-yF)¢ for all ¢ €V,
from which it follows that Au,¢ € R(F) 1if and only if A“¢ € R(F), and that

= (Fla ,-p' DI

_ (el _
T = (F A D g, u D(T)"

Since A# is an isomorphism on V and R(F) 1is dense in V, it
follows that D(T) is dense in V, which proves (1i).

Statement (i1) follows from the definitions of Au and T.

To prove (iii), let ¢ € V and we H such that o&[¢,v] = (w,v)H for

all v 1in a dense subset of V. Then

(Ap¢_“F¢’V)V = ®lo,v] = (w,v)H = (Fw,v)v

for all v 1in a dense subset of V, which implies A“¢-4uF¢ = Fw so that
¢ € D(T) and T¢ = w.

Finally, T : D(T) ¢ V—H is a closed operator because A;lF € B(H,V).a

Noting (34) and (35), Theorem 22 implies the existence of a unique closed
operator T(z) : V—H for each z € G, such that D(T(z)) 1is dense in v;

o(z)lg,v] = (T(z)¢,v)H for all ¢ € D(T(z)) and v € V; and for any W € H,

(36) T(z)¢ = w if and only if ¢(z)(¢,v] = (w,v)H

for all v in a dense subset of V.

Since T(z) : D(T{(z)) ¢ V—H 1is closed, the resolvent operator R({,z) =
('l‘(z)-c)-1 belongs to B(H,V) for each & € p(T(z)), the resolvent set of
T(z). A consequence of (34), (35), (36), and Lemma 3 is that p(T(z)) con-

tains (L € € : -Re { 2 u(z)}. A standard result in the spectral theory of
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operators is that p(T(z)) 1s an open set in €. In Theorem 24 below, we

will prove that
(37) § = {(C,2) e ! . Cep(T(z)) and z e G}

i an open set also, and that R : §—B(H,V) 1is holomorphic.

First we prove a preliminary result.

Lemma 23. For each a € G, if & € p(T(a)) then there exists a neighborhood
G ,.cG, of a such that
ag

i) L € p(T(z)) and R(L,2) € B(H,V) for all =z € Ga and

c’
11) z—R{Z,2z) € B(H,V) 1is holomorphic on Gac'
Proof. The continuity of p allows us to choose a neighborhood Ga ¢ G of

a, and a number M, 2 u(z) for z € Ga; that is,
2(2)[vI2 < Re(8(z)v,v]) +p_[IviZ
v ’ a 'H

for all veV and z e Ga' We will first prove the lemma for ( = By and

then use the identity

(38) (T(z)-C)r(-ua.z) = IH-(C+ua)R(-ua,z) for z € Ga,

to prove the lemma for arbitrary & € p(T(a)).
As in the proof of Theorem 22, associate an operator Aa(z) € B(V,V) to

®(z) such that

(39) 0(2)[¢.v]'+ua(¢,v)H = (Aa(2)¢,v)v

for all ¢ and v in V. It was shown there that while Aa(z) depends on
the choice of M, Aa(z)-uaF does not depend on My where F e B(H,V) s
defined by (Fw,v)v = (w,v)H for all we H adn v € V. Furthermore,

D(T(z)) = {$ € V : A_(2)¢ € R(F)} and T(z) = (F‘_lAa(z)-ua)I for

D(T(z))
= g1 —to-~
z € Ga. Consequently, T(z)-*ua = F Aa(Z)'D(T(z)) is a one-to-one map of
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D(T(z)) onto H, and it follows that k€ p(T(z)) whenever 2z € Gl'

According to Lemma 20 and the hypothesis that z+—®(z)(¢,v] is analytic, it

follows from (39) that Aa : Ga—+B(V.V) is holomorphic. Since Aa(z)-1 €

B(V,V) for each z in Ga’ Lemma 21 implies that Aa(')-l : G,—B(V,V) is

1
holomorphic. Therefore zk—aR(-ua.z) = Aa(z)-lF € B(H,V) is holomorphic on
Ga'

Now, £ e p(T(a)). When 2z = a, the left-hand side of (38) is a one-to-
one map of H onto H; hence its inverse exists and belongs to B(H,H). As
a function of 2z with values in B(H,H), R(-pa,z) is holomorphic on Ga
because it is holomorphic as a function with values in B(H,V) and because
the embedding of V into H 1is bounded. Thus the right-hand side of (38),
as a funciotn of 2z with values in B(H,H), is holomorphic on Ga’ and its

inverse belongs to B(H,H) when 2z = a. According to Lemma 21, there is a

neighborhood Gac

c Ga of a -on which

Zh—e(I-(C+ua)R(-ua,z))-1 € B(H, H)

is holomorphic. Therefore, & € p(T(z)) for 2z € Ga and the holomorphy of

c’

1

z e Gacp—eR(c.z) = R(-ua,z)(I-(c+ua)R(-ua.z))‘ € B(H,V)

follows.

Theorem 24. The set §, defined by (37), is open in €™!, and

(£,2) —R(&,z) € B(H,V) 1is holomorphic on §.

Proof. Let (w,a) € §¥. This proof is essentially a careful repetition of the
second part of Lemma 23, with 7 replacing H,. Lemma 23 implies that a
neighborhood Gan € G of a can be found such that 7 € p(T(z)) for z €
G__, and z+—>R(9,z) € B(H,V) 1is holomorphic on Gan' Analogous to (38),

an
we have
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(40) (T(z)=C)R(7n,2z) = I -({-n)R(n,z) for z e Gan‘

Now the right-hand side of (40), as a function of (&,z), with values in
B(H,H), 1is holomorphic on Cxcan and takes on the value I when (,2z) =
(n,a). A consequence of Lemma 21 is that there is a neighborhood ?na < Cxcan
of (h a) on which (C,z)o——e(l—(C-n)R(n,z)T1 € B(H,H) is holomorphic.
Hence, & € p(T(z)) for (g,2) € ?na, vwhich implies that ¥ 1is open. It

follows that
(2,2) —R(Z,2) = R(n,2)(I-C-n)R(n,2))" 1 € B(H,V)

is holomorphic on 9__. u]
na

The enxt corollary states a condition on the family {®(z) : z € G}

which guarantees that the operator T(z) is self-adjoint if z € G n R".

Corollary 25. Suppose that z = (51,...,En) € G whenever z € G. If
&(z)[v,¢] = ®(z)(¢,v] for all ¢ and v in V and for z € G, then T(z)*
= T(z) for all z € G, 1in which T(z)‘ is the adjoint of T(z) as an
operator on H. |

Note that R({,z) 1is compact as an operator on H, when & € p(T(z)),
beacuse R(g,z) € B(H,V) and V 1is compactly embedded in H by hypothesis.
Consequently, the spectrum of T(a) consists entirely of eigenvalues that
have finite multiplicity and no finite accumulation point.

Recall that glven w e€ H, we want to determine the existence and the

dependence upon 2z of the solution ¢(z) € V of

(z)e(z),v] = (w,v)H for all v e V.

It follows from (36) that this is equivalent to solving T(z)¢(z) = w. When

0 1is not an eigenvalue ¢(z) = R(0,z)w. Lemma 23 yields
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Theorem 26. ¢ : {z € G : 0 € p(T(2)}}—V 1is holomorphic.
When O 1s a simple eigenvalue, we have the following result.

Theorem 26. Let a € G and suppose 0 1is a simple eigenvalue of T(a).

Then there exists a neighborhood Ga c G of a and two functions A and
z—P(z) € B(H,V), which are holomorphic on Ga' such that a(a) = 0, A(z)
is a simple eigenvalue of T(z), and P(z) projects H onto the
1-dimensional eigenspace that corresponds to A(z). Furthermore, there exists

another holomorphic function =z e Gah—éRz(O.z) € B(H,V) such that
_ 1
(41) ¢(Z) = WP(Z)W+R2(O.z)w

for all =z € G, for which A(z) = 0.

The remainder of this section will be devoted to the proof of Theorem 27.
The theory concerning the eigenvalue problem associated to T(z) is well
developed (cf. [5]). 1In fact, the form of ¢(z) 1in (41) is a direct conse-
quence of that theory. We repeat here many of these ideas in the process of
proving the conclusions about analyticity.

Since the spectrum of T(a) 1is a discrete set of eigenvalues having no
finite accumulation point, a Jordan curve € can be drawn in p(T(a)) so as
to enclose an open set in € containing 0 1in its interior and the other
eigenvalues in the exterior of its closure. Then ©x{a} ¢ §, where % is
the open set defined by (37). Hence, for each ¢ € & there is a disc

D(g,r(g)) ¢ €, (r(g) > 0, 1is the radius) and a polydisc A(a,p(l)) ¢ c”

such that

(¢,a) € D(L,r(g))xA(a,p(g)) c §.
However, € 1is compact, so a finite set {CJ €e®: J=1,...,k} can be
chosen such that (D(CJ,r(CJ)) : J=1,...,k} covers 8. Consequently, € c¢
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k
p(T(2)) for z e G, = JQIA(a,p(CJ)).

Next the operator P(z) 1is defined for =z € G; as a Rlemann integral of

B(H, V)-valued functions by

(42) P(z) = —2% J R(Z,z)dC.
€

It is shown in [5] (Theorems III-6.17 and VII-1.7) that P(z) 1is a projection
operator and that P(a) maps H onto Ml(a), the 1-dimensional eigenspace
associated with the eigenvalue 0 of T(a). Moreover, H can be decomposed

as H= Ml(z)-*Mz(z) for z e Ga’ in which

(43) Ml(Z) s P(z)H and Mz(z) = (I-P(z))H.

It is also true that P : G;—aB(H,V) is holomorphic because, by Theorem 24,
the same is true of R : §—B(H,V). Since dim(Ml(a)) = 1, and since

P: G;—eB(H.H) is continuous (recall that V is continuously embedded in

H), it follows from [5] (paragraphs 1-§4.6 and IV-§3.4) that
(44) dim(Ml(z)) =1 for z € G;.
Now let wa € Ml(a) and non-zero, and define Ga to be an open

connected subset of G; such that a e Ga and (P(z)wa,wa) #0 for z e G_.

Next, define

(45) y(z) = P(z)wa for z € Ga'

and it follows that y : Ga—+V i{s holomorphic with y(a) = wa.

It follows from paragraphs I11-§5.6 and I11-§6.1 of (5] that for =z € G_,
P(z)v € D(T(z)) for all v e€ D(T(z)),

and
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T(z)v € Mk(z) for v e Mk(z) n D(T(z)) and k = 1.

Thus Tk(z) : Mk(z)—eMk(z) for k=1,2, and for z € Ga can be defined by

Tk(z) = T(z)| The eigenvalue problem has now been decomposed

M (z2)nD(T(2))"
into two eigenvalue problems, one for each Tk(z) in Mk(z). Of particular
interest here is the eigenvalue problem for TI(Z)’ because 0 and wa form
an eigenvalue-eigenfunction pair for Tl(a).

According to (44), TI(Z) is a 1-dimensional operator. Therefore, A(z)

= trace(Tl(z)) is the eigenvalue of TI(Z)' i.e., for each z € Ga’
(48) T(z)wa = Tl(z)lﬁz = A(zlwz for all wz € Ml(Z) n D(T(z)).

In (46), setting wz = P(z)wa and taking inner products in H with wa'

yields

(T(Z)P(z)wa,wa)ﬂ
(P(z)lﬂa.wa)H

(47) Alz) = for z e G,.
Since T(z) 1is a closed operator, it follows from (42) and the identity

T(z)R(Z,2z) = I +ZR(L,z) that T(z)P(z) = _§%T I ZR(Z,z)d{. Consequently,
€

z+—>T(z)P(z) € B(H,V) 1is holomorphic on Ga (c G;). Therefore, the analy-
ticity of A on Ga follows from (47) because Ga was chosen so that
(P(z)wa,wa) #0 when z € Ga' Since ® c p(T(z)) for all z € Ga, A(z)
lies in the interior of the open set enclosed by €, whereas the remainder of
the spectrum of T(z) must lie in the open set that is exterior to §&.

let z € Ga such that A(z) # 0. Then R(0,z) exists and commutes with

P(z). Consequently, we can define Rk(O,z) € B(H,V) for k =1,2, by

R,(0,2) = (R(0,2)P(z) = P(2)R(0,2),

and
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RZ(O'Z) = R(0,2z)(1-P(z)) = (I-P(2))R(0,2).

By passing R(0,z) under the integral sign in (42), then using the resolvent
equation to otbain R(0,z)-R(g,z) = -CR(0,z)R(L,z) when O and & are in

p(T(z)), and noting that O 1lies inside the open set enclosed by €,

(48) R(0,2)P(z) = R(o,z)-z%J B2
€
is obtained for each =z € Ga such that A(z) # 0. However, © c p(T(z2)) for
all z e Ga' so that the second term on the right-hand side of (48) is holo-
morphic as a function of z on Ga with values in B(H,V). Consequently,
ZF—9R2)9,2) € B(H,V) can be continued analytically to all of Ga'
Finally, it is clear from (43) and the definition of Rl(O,z) that

Rl(o,z)w € MI(Z) n D(T(z)) for all we H and for each z € G such that

A(z) # 0. Then (46) implies

A(z)Rl(O,z)w = T(z)Rl(O,z)w = T(z)R(0,z)P(z)w = P(2)w,

_ 1
from which Rl(O,z)w = XTETP(Z)W is obtained from all w e H and for each
z € G such that A(z) # 0. This finishes the proof of Theorem 27 because

¢(2z) = R(0,2)w = Rl(O,z)w4-R2(0,z)w when A(z) = O.
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